High-Rank Matrix Completion and Clustering under Self-Expressive Models
نویسنده
چکیده
We propose efficient algorithms for simultaneous clustering and completion of incomplete high-dimensional data that lie in a union of low-dimensional subspaces. We cast the problem as finding a completion of the data matrix so that each point can be reconstructed as a linear or affine combination of a few data points. Since the problem is NP-hard, we propose a lifting framework and reformulate the problem as a group-sparse recovery of each incomplete data point in a dictionary built using incomplete data, subject to rank-one constraints. To solve the problem efficiently, we propose a rank pursuit algorithm and a convex relaxation. The solution of our algorithms recover missing entries and provides a similarity matrix for clustering. Our algorithms can deal with both low-rank and high-rank matrices, does not suffer from initialization, does not need to know dimensions of subspaces and can work with a small number of data points. By extensive experiments on synthetic data and real problems of video motion segmentation and completion of motion capture data, we show that when the data matrix is low-rank, our algorithm performs on par with or better than low-rank matrix completion methods, while for high-rank data matrices, our method significantly outperforms existing algorithms.
منابع مشابه
Algebraic Variety Models for High-Rank Matrix Completion
We consider a generalization of low-rank matrix completion to the case where the data belongs to an algebraic variety, i.e., each data point is a solution to a system of polynomial equations. In this case the original matrix is possibly high-rank, but it becomes low-rank after mapping each column to a higher dimensional space of monomial features. Many well-studied extensions of linear models, ...
متن کاملHigh-Rank Matrix Completion and Subspace Clustering with Missing Data
This paper considers the problem of completing a matrix with many missing entries under the assumption that the columns of the matrix belong to a union of multiple low-rank subspaces. This generalizes the standard low-rank matrix completion problem to situations in which the matrix rank can be quite high or even full rank. Since the columns belong to a union of subspaces, this problem may also ...
متن کاملLaplacian regularized low rank subspace clustering
The problem of fitting a union of subspaces to a collection of data points drawn from multiple subspaces is considered in this paper. In the traditional low rank representation model, the dictionary used to represent the data points is chosen as the data points themselves and thus the dictionary is corrupted with noise. This problem is solved in the low rank subspace clustering model which deco...
متن کاملHigh-Rank Matrix Completion
This paper considers the problem of completing a matrix with many missing entries under the assumption that the columns of the matrix belong to a union of multiple low-rank subspaces. This generalizes the standard low-rank matrix completion problem to situations in which the matrix rank can be quite high or even full rank. Since the columns belong to a union of subspaces, this problem may also ...
متن کاملSelf-Expressive Decompositions for Matrix Approximation and Clustering
Data-aware methods for dimensionality reduction and matrix decomposition aim to find low-dimensional structure in a collection of data. Classical approaches discover such structure by learning a basis that can efficiently express the collection. Recently, “self expression”, the idea of using a small subset of data vectors to represent the full collection, has been developed as an alternative to...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2016